

General Certificate of Education (A-level) January 2011

Chemistry
CHEM5
(Specification 2420)
Unit 5: Energetics, Redox and Inorganic Chemistry

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates" responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates" scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates" reactions to a particular paper. Assumptions about future mark schemes on the basis of one year"s document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

[^0]Copyright © 2010 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Question	Marking Guidance	Mark	Comments
1(a)	Enthalpy change for the formation of 1 mol of gaseous atoms From the element (in its standard state) Enthalpy change to separate 1 mol of an ionic lattice/solid/compound Into (its component) gaseous ions	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	allow heat energy change for enthalpy change ignore reference to conditions enthalpy change not required but penalise energy mark all points independently
1(b)	$\begin{aligned} & \Delta H_{\mathrm{L}}={ }^{-} \Delta H_{\mathrm{f}}+\Delta H_{\mathrm{a}}+\mathrm{I} . \mathrm{E} .+1 / 2 \mathrm{E}(\mathrm{Cl}-\mathrm{Cl})+\mathrm{EA} \\ & =+411+109+494+121-364 \\ & =+771\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Or correct Born-Haber cycle drawn out -771 scores $2 / 3$ +892 scores $1 / 3$ -51 scores 1/3 -892 scores zero +51 scores zero ignore units
1(c)(i)	Ions are perfect spheres (or point charges) Only electrostatic attraction/no covalent interaction	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	mention of molecules/intermolecular forces/covalent bonds CE $=0$ allow ionic bonding only If mention of atoms $\mathrm{CE}=0$ for M2
1(c)(ii)	Ionic	1	Allow no covalent character/bonding

1(c)(iii)	lonic with additional covalent bonding	1	Or has covalent character/partially covalent Allow mention of polarisation of ions or description of polarisation

Question	Marking Guidance	Mark	Comments
2(a)	Because it is a gas compared with solid carbon Nitrogen is more disordered/random/chaotic/free to move	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Mark independently
2(b)	$0 \mathrm{~K} /-273 \mathrm{C} /$ absolute zero	1	
2(c)	$\Delta G=\Delta H-T \Delta S$	1	$\begin{aligned} & \text { Allow } \Delta H=\Delta G-T \Delta S \\ & T \Delta S=\Delta H-\Delta G \\ & \Delta S=(\Delta H-\Delta G) / T \\ & \text { Ignore } \theta \text { in } \Delta G^{\theta} \end{aligned}$
2(d)	ΔG is less than or equal to zero ($\Delta G \leq 0$)	1	Allow ΔG is less than zero $(\Delta G<0)$ Allow ΔG is equal to zero ($\Delta G=0$) Allow ΔG is negative
2(e)	$\begin{aligned} & \text { When } \Delta G=0 \quad T=\underline{\Delta H / \Delta S} \\ & \Delta H=+90.4 \\ & \Delta S=\Sigma \mathrm{S} \text { (products) }-\Sigma \mathrm{S}(\text { reactants }) \\ & \Delta S=211.1-205.3 / 2-192.2 / 2=\underline{12.35} \\ & T=(90.4 \times 1000) / 12.35=7320 \mathrm{~K} / 7319.8 \underline{\mathrm{~K}} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow $\Delta H=+90$ Allow 7230 to 7350 K (Note 7.32 K scores 4 marks) Units of temperature essential to score the mark

Mark Scheme - General Certificate of Education (A-level) Chemistry - Unit 5: Energetics, Redox and Inorganic Chemistry - January 2011

2(g)	$\begin{aligned} & \Delta H=1.9\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & \Delta S=2.4-5.7=-3.3\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \end{aligned}$ ΔG is always positive	1 1 1	for M1 and M2 allow no units, penalise wrong units This mark can only be scored if ΔH is +ve and ΔS is -ve
2(f)	Activation energy is high	1	Allow chemical explanation of activation energy Allow needs route with lower activation energy Allow catalyst lowers activation energy

Question	Marking Guidance	Mark	Comments
3(a)	$\mathrm{Na}_{2} \mathrm{O}$ ionic Strong forces between ions/strong ionic bonding SiO_{2} macromolecular Strong covalent bonds (between atoms)	1 1 1 1	mention of molecules/intermolecular forces/delocalised electrons, $\mathrm{CE}=0$ Allow lots of energy to break bonds provided M1 scored Allow giant molecular/giant covalent. If ions mentioned, CE = 0 Allow lots of energy to break covalent bonds If breaking intermolecular forces are mentioned, $\mathrm{CE}=0$ for M4
3(b)	Higher Li^{+}(or Li ion) smaller than Na^{+} Attracts O^{2-} ion more strongly	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Must imply Li^{+}ion Allow Li^{+}has higher charge/size ratio not charge/mass Allow stronger ionic bonding Allow additional attraction due to polarisation in $\mathrm{Li}_{2} \mathrm{O}$ M3 can only be scored if M2 gained
3(c)(i)	Molecular Covalent bonds (between P and O)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Do not allow simple covalent BUT simple covalent molecule scores M1 and M2 Ignore reference to van der Waals" or dipole-dipole

3(c)(ii)	Weak van der Waals" forces and/or dipole-dipole forces between $\underline{\text { molecules }}$	1	Allow weak inter-molecular forces - can score "between" molecules in (c)(i) CE $=0$ if ionic or macromolecular mentioned in (c)(i) Must state van der Waals" forces are weak OR low energy needed to break van der Waals" forces
3(d)	$\begin{aligned} & \text { Allow -1 to }+2 \\ & \mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 12 \mathrm{H}^{+}+4 \mathrm{PO}_{4}{ }^{3-}\left(\text { or } 4 \mathrm{H}_{3} \mathrm{PO}_{4}\right) \end{aligned}$ Allow 12 to 14 $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Na}^{+}+2 \mathrm{OH}^{-}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow balanced equations to form $\mathrm{HPO}_{4}{ }^{2-}$ or $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$ ignore state symbols Allow $2 \mathrm{Na}^{+}+\mathrm{O}^{2-}$ on LHS, 2 NaOH on RHS , ignore s.s. Mark independently
3(e)	$6 \mathrm{Na}_{2} \mathrm{O}+\mathrm{P}_{4} \mathrm{O}_{10} \rightarrow 4 \mathrm{Na}_{3} \mathrm{PO}_{4}$ Acid-base	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Allow neutralisation, mark independently of M1 Do not allow Acid + Base \rightarrow Salt + Water

Question	Marking Guidance	Mark	Comments
4(a)	Incomplete (or partially filled) d orbitals/sub-shells	1	Do not allow d shell
4(b)	Variable oxidation states	1	
4(c)(i)	$\left[\mathrm{H}_{3} \mathrm{~N}-\mathrm{Ag}-\mathrm{NH}_{3}\right]^{+}$	1	Allow [Cl-Ag-Cl] ${ }^{-}$or similar $\mathrm{Cu}(\mathrm{I})$ ion Allow compounds in (i), (ii) and (iii) (eg Cl-Be-Cl) Allow no charge shown, penalise wrong charge(s)
4(c)(ii)	Cis platin drawn out as square planar	1	Allow $\mathrm{NiX}_{4}{ }^{2-}$ etc
4(c)(iii)	$\left[\mathrm{CuCl}_{4}\right]^{2-}$ drawn out as tetrahedral ion	1	Or [CoCl4 $\left.{ }_{4}\right]^{--}$drawn out
4(d)(i)	$\mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}$	1	Allow multiples Allow $\mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ ignore state symbols
4(d)(ii)	In a different phase/state (from the reactants)	1	
4(d)(iii)	$\begin{aligned} & \mathrm{V}_{2} \mathrm{O}_{5}+\mathrm{SO}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{4}+\mathrm{SO}_{3} \\ & \mathrm{~V}_{2} \mathrm{O}_{4}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{5} \end{aligned}$	1	can be in either order allow multiples
4(d)(iv)	Surface area is increased By use of powder or granules or finely divided	1	Allow suspending/spreading out onto a mesh or support

4(e)(i)	Forms two or more co-ordinate bonds	1	Allow more than one co-ordinate bond or donates more than 1 electron pair. Do not allow "has more than one electron pair" Allow uses more than one atom to bond (to TM)
4(e)(ii)	Number of product particles > Number of reactant particles Disorder increases or entropy increases (or entropy change is positive)	1 1	Allow molecules/entities instead of particles Penalise incorrect numbers (should be $2 \rightarrow 5$) Allow ΔG must be negative because $\Delta H=0$ and ΔS is $+\mathrm{ve}$
4(e)(iii)	6 Cyanide strongly bound to Co (by co-ordinate/covalent bond)	1 1	

Question	Marking Guidance	Mark	Comments
5(a)(i)	Co/Cobalt $\begin{aligned} & (+) 4 \\ & (+) 3 \end{aligned}$	1 1	If Co or Cobalt not given $C E=0$ ignore case in symbol for Co Allow 4 and 3 in either order
5(a)(ii)	$\mathrm{Li} \rightarrow \mathrm{Li}^{+}+\mathrm{e}^{-}$	1	Ignore state symbols Allow e without -ve sign Do not allow equilibrium sign
5(a)(iii)	Platinum is a conductor (Platinum is) unreactive/inert	1	Ignore mention of surface area or catalyst Allow 2 marks if two properties given on one answer line Apply list principle to contradictions/wrong answers Do not allow platinum resists corrosion
5(a)(iv)	Li reacts with water/forms lithium hydroxide	1	Allow water breaks down (or is electrolysed) on recharge

| 5(b)(i) | $\mathrm{Pt}\left\|\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq}), \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \\| \mathrm{ClO}_{3}{ }^{-}(\mathrm{aq}), \mathrm{Cl}^{-}(\mathrm{aq})\right\| \mathrm{Pt}$ | 2 | State symbols and ," "not necessary
 Allow \| in place of ',' NOT "," inplace of |
 Ignore H^{+}and $\mathrm{H}_{2} \mathrm{O}$
 Deduct one mark for each mistake (e.g. Pt missed twice counts as two mistakes)
 Allow reverse order for whole cell
 $\mathrm{Pt}\left\|\mathrm{Cl}^{-}, \mathrm{ClO}_{3}{ }^{-}\right\|\left\|\mathrm{SO}_{4}{ }^{2-}, \mathrm{SO}_{3}{ }^{2-}\right\| \mathrm{Pt}$ |
| :---: | :---: | :---: | :---: |
| 5(b)(ii) | $\mathrm{ClO}_{3}^{-}+3 \mathrm{SO}_{3}{ }^{2-} \rightarrow \mathrm{Cl}^{-}+3 \mathrm{SO}_{4}{ }^{2-}$
 Oxidising agent ClO_{3}^{-}
 Reducing agent $\mathrm{SO}_{3}{ }^{2-}$ | 1 1 1 | |

Question	Marking Guidance	Mark	Comments
6(a)	Brown ppt/solid Gas evolved/effervescence $2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{CO}_{3}^{2-} \rightarrow 2 \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	Must be stated, Allow CO_{2} evolved. Do not allow CO_{2} alone Correct iron product (1) allow $\mathrm{Fe}(\mathrm{OH})_{3}$ and in equation Balanced equation (1)
6(b)	White ppt/solid Colourless Solution $\begin{aligned} & {\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{O}} \\ & \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}+3 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Only award M2 if M1 given or initial ppt mentioned Allow $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Al}(\mathrm{OH})_{3}+6 \mathrm{H}_{2} \mathrm{O}$ Allow formation of $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6-x}(\mathrm{OH})_{x}\right]^{(x-3)-}$ where $\mathrm{x}=4,5,6$ Allow product without water ligands Allow formation of correct product from $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
6(c)	Blue ppt/solid (Dissolves to give a) deep blue solution $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4}^{+}$ $\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+2 \mathrm{OH}^{-}+2 \mathrm{H}_{2} \mathrm{O}$		Only award M2 if M1 given or initial ppt mentioned Allow $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4}^{+}+4 \mathrm{H}_{2} \mathrm{O}$ Allow two equations: $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-}$ then $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+4 \mathrm{H}_{2} \mathrm{O}$ etc Allow $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
6(d)	Green/yellow solution $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	

Question	Marking Guidance	Mark	Comments
7(a)(i)	Ammonia Starts as a pink (solution) Changes to a yellow/straw (solution)	1	If reagent is missing or incorrect cannot score M3 Allow pale brown Do not allow reference to a precipitate
7(a)(ii)	(dark) brown	1	Do not allow pale/straw/yellow-brown (i.e. these and other shades except for dark brown)
7(b)(i)	Ruby / red-blue / purple / violet / green Green $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+6 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}+6 \mathrm{H}_{2} \mathrm{O}$ Formula of product	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Do not allow red or blue If ppt mentioned contradiction/CE $=0$ If ppt mentioned contradiction/CE $=0$ Can score this mark in (b) (ii)
7(b)(ii)	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{OH}^{-} \\ & 2\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}+3 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+8 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-} \end{aligned}$ Yellow	1	Allow 1 mark out of 2 for a balanced half-equation such as $\mathrm{Cr}(\mathrm{III}) \rightarrow \mathrm{Cr}(\mathrm{VI})+3 \mathrm{e}^{-}$ or $\mathrm{Cr}^{3+}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CrO}_{4}{ }^{2-}+8 \mathrm{H}^{+}+3 \mathrm{e}^{-}$etc also for $2 \mathrm{Cr}(\mathrm{III})+3 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CrO}_{4}{ }^{2-}$ (unbalanced) Do not allow orange

7(c)	$2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{O}_{2}$ Moles $\mathrm{MnO}_{4}^{-}=(24.35 / 1000) \times 0.0187=\underline{4.55 \times 10^{-4}}$ Moles $\mathrm{H}_{2} \mathrm{O}_{2}=\left(4.55 \times 10^{-4}\right) \underline{\times 5 / 2}=1.138 \times 10^{-3}$ Moles $\mathrm{H}_{2} \mathrm{O}_{2}$ in $5 \mathrm{~cm}^{3}$ original $=\left(1.138 \times 10^{-3}\right) \times 10=0.01138$ Original $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=0.01138 \mathrm{x}(1000 / 5)=2.28 \mathrm{~mol} \mathrm{dm}^{-3}$ (allow 2.25-2.30)		if no equation and uses given ratio can score M2, M3, M4 \& M5 Note value must be quoted to at least 3 sig. figs. M 2 is for 4.55×10^{-4} M3 is for $\times 5 / 2$ (or7/3) Mark consequential on molar ratio from candidate's equation M4 is for $x 10$ M5 is for consequentially correct answer from (answer to mark 4) x (1000/5) Note an answer of between 2.25 and 2.30 is worth 4 marks) If candidate uses given ratio 3/7 max 4 marks: M1: Moles of $\mathrm{MnO}_{4}^{-}=\underline{4.55 \times 10^{-4}}$ M2: Moles $\mathrm{H}_{2} \mathrm{O}_{2}=\left(4.55 \times 10^{-4}\right) \times 7 / 3=1.0617 \times 10^{-3}$ M3: Moles $\mathrm{H}_{2} \mathrm{O}_{2}$ in $5 \mathrm{~cm}^{3}$ original $=\left(1.0617 \times 10^{-3}\right) \times 10=0.01062$ M4: Original $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=0.01062 \times(1000 / 5)=2.12 \mathrm{~mol}$ dm^{-3} (allow 2.10 to 2.15)

[^0]: Further copies of this Mark Scheme are available from: aqa.org.uk

